
March 2000 The Delphi Magazine 35

Contain Yourself!
by David Baer

Invariably, along with the much-
heralded enhancements of each

new release of Delphi come a
number of lesser improvements
that sometimes don’t rate even a
passing mention in the What’s New
help file. One of these, the unit
Contnrs.pas, made its first appear-
ance in Delphi 5. In this article we’ll
take a look at the modest, but
useful, collection of goodies to be
found in this unit.

We’ll also explore a few addi-
tional topics related to Delphi con-
tainer classes. For one thing, the
venerable workhorse class, TList,
got a slight facelift in D5. We’ll also
briefly look at another class,
TInterfaceList, introduced in D4
but still unknown to many. Finally,
getting into the spirit of the discus-
sion, I’ll present a new container
class, TFlexiSortList, that pro-
vides a service that you might find
useful on occasion.

Old Dogs, New Tricks
The TList class has been with us
since the first release of Delphi,
and there’s probably not another
utility class that has been as widely
employed. It’s simple and flexible,
and it hasn’t needed much

alteration to improve those quali-
ties over time. For instance, the
only modification to the class from
D3 to D4 was to make one of its
methods, Clear, dynamic (this got
modified to virtual in D5).

But in the D5 version, we find a
few unexpected surprises (see
Listing 1 for an abbreviated decla-
ration). For one thing, we have a
new method function, Extract, that
removes an item from the list, pass-
ing back the pointer value as the
function result. Why was this
added? Did some Borland VCL
engineer simply think ‘hey, I bet
the developer community would
really be grateful for this one’?
Probably not. As we’ll see, many of
the new container enhancements
are employed in the VCL. And for
those that aren’t, we can only
determine that no use is made of
them in the shipping VCL. There’s
an unknown amount of Borland
code that uses the VCL and sup-
ports the IDE that we’re not
privileged to examine.

Another change in TList would
appear to be related to internat-
ionalization capabilities of the
VCL. The Error method is now an
overloaded one with two versions,

the newly added method’s signa-
ture allowing the specification of a
PResStringRec pointer value to
allow error text to be extracted
from a resource file. This one is
hardly worth special mention, but
if you take a closer look at Error,
you may spot a language feature
you’ve never encountered before
(at least, this was something I’d
never noticed).

Error is a routine called from
various places in the TList imple-
mentation code. It provides a
simple and concise way to cause
an exception to be raised with a
minimum of fuss (not that writing
code for raising an exception
requires all that many keystrokes
to begin with). But take a closer
look at Listing 2. Here we see the
seldom used raise... at address
form of the statement.

This is a crafty trick to make the
exception appear to be raised at
the point it would have been, had
the raise statement appeared
right at the point of failure detec-
tion. The single asm statement clev-
erly calculates this address and
the compiler does the rest.

If you’re really observant, you
might also spot one small problem
with this new code. The trick
worked for TList in D4 because all
calls to Error used the first (and
only) version of the now over-
loaded method (the code of this
version is unchanged between D4
and D5). In D5, all the calls to Error
use the signature of the second
method version. This version calls
the first version. For all the good
intentions in evidence, the result is
not quite what was intended, as
the exception now appears to
occur in the outer Error method.
But, never mind. Thank you
Borland for this intriguing Object
Pascal lesson anyway.

Always The Last To Find Out
Although the enhancements dis-
cussed so far don’t really amount
to much, one that could be more
than a little useful at times comes
from a new notification capability
in TList. D5 defines a new type:

TListNofication = (lnAdded,
lnExtracted, lnDeleted);

TList = class(TObject)
private
...

protected
...
procedure Notify(Ptr: Pointer; Action: TListNotification); virtual;

public
...
procedure Clear; virtual;
...
class procedure Error(const Msg: string; Data: Integer); overload; virtual;
class procedure Error(Msg: PResStringRec; Data: Integer); overload;
...
function Extract(Item: Pointer): Pointer;
...

end;

class procedure TList.Error(const Msg: string; Data: Integer);
function ReturnAddr: Pointer;
asm
MOV EAX,[EBP+4]

end;
begin
raise EListError.CreateFmt(Msg, [Data]) at ReturnAddr;

end;
class procedure TList.Error(Msg: PResStringRec; Data: Integer);
begin
TList.Error(LoadResString(Msg), Data);

end;

➤ Above: Listing 1 ➤ Below: Listing 2

36 The Delphi Magazine Issue 55

This can be used to implement a
notification scheme in classes
derived from TList. A new method,
Notify (Listing 1 again), is present
in TList. It may be overridden to
react to inserts and deletes
(including extraction operations
via the new Extract function). Noti-
fication always occurs after the
fact. For an insert operation, the
item has already been placed in the
list. For a delete or extract, it’s
been removed.

A replace gives both an
lnDeleted and lnAdded notification,
again, after the fact. But there
seems to be a bug in Borland’s
code. Look at Listing 3, which
shows the code of TList.Put, and
see if you can spot the problem.

The Notify method in TList itself
is empty, so only classes derived
from TList can use this new capa-
bility. However, Notify is called at
all the appropriate places in other
TList methods, and derived
classes supplying a Notify over-
ride will have that method called
faithfully.

Personally, I think it would have
been a little more useful had
Borland added an OnChange event
to the class. Users of the class
would then be able to directly

make use of notifications without
the need of a derived class.
Although I’ll spend no more time
on this subject here, you can find a
derived TList class that does just
this on the companion disk.
TNotifyList is a straightforward
derivation of TList that extends its
capabilities with an OnChangeevent.

Before we leave the subject of
New Tricks, let me point out one
that the other main workhorse util-
ity list, TStringList, now knows. In
Listing 4, you can see the declara-
tion of the new type TStringList-
SortCompare. TStringList sports a
new method, CustomSort, which
can be passed a function to be used
in making the ‘less-than’, ‘equal’
and ‘greater-than’ determinations.
The old Sort method is still there
and works as it always has. But
now you can easily introduce an
alternative ordering of your own.

Finally, I want to mention the
class TInterfaceList, found in
Classes.pas. Based upon the occa-
sional question that appears in the
Delphi newsgroups, the existence
of this class is unknown to many. It
solves one common problem for
those needing to keep track of
reference counted interfaces.

Not only does it obviate the need
for type casting interface refer-
ences upon insertion, reference,
and deletion, its use ensures that
the reference counting necessary
behind the scenes will be accom-
modated correctly. Furthermore,
the list manipulation is thread safe.
TInterfaceList does not derive

from TList, but instead contains an
internal TThreadList to manage the
contained items.

But the most curious aspect of
TInterfaceList is that it imple-
ments an interface itself: IInter-
faceList. This offers most of the
same methods and properties that
its associated TInterfaceList class
does as public methods and prop-
erties. When would you use this
capability? That’s not an easy
question to answer. We can see it
put to use in only a handful of fairly
exotic VCL locales: several uses
are made in the internet VCL, and
one use is made in Dsgnintf.pas.

What can be safely stated is that
if you need to manage a collection
of interfaces, TInterfaceList will
do the job nicely, even if you make
no use of the IInterfaceListat all.

More Goodies
Let’s move on to the new unit,
Contnrs.pas. A number of new
classes appear in this unit. Figure 1
shows two class hierarchies. The
first offers several list types for
managing components and
classes. The second provides a
basic stack and queue capability.

Starting with the first three,
TClassList, TObjectList and its
derived TComponentList, you can
see their declarations in Listing 5.
What can we say about these?
Well, for one thing, we can be
pretty sure they weren’t written by
Danny Thorpe. Danny, who is one
of Borland’s pre-eminent VCL
gurus, had this to say in his book

➤ Above: Listing 3 ➤ Below: Listing 4

TStringListSortCompare =
function(List: TStringList; Index1, Index2: Integer): Integer;

TStringList = class(TStrings)
private
...

protected
...

public
...
procedure CustomSort(Compare: TStringListSortCompare); virtual;
...

end;

procedure TList.Put(Index: Integer; Item: Pointer);
var Temp: Pointer;
begin
if (Index < 0) or (Index >= FCount) then
Error(@SListIndexError, Index);

Temp := FList^[Index];
FList^[Index] := Item;
if Temp <> nil then
Notify(Item, lnDeleted);

if Item <> nil then
Notify(Item, lnAdded);

end;

TListTList

TStackTStack

TTObjectListObjectList

TComponentListTComponentList

TClassListTClassList

TTOrderedListOrderedList

TListTList

TTObjectQueueObjectQueue

TQeueTQeue

TTObjectStackObjectStack

➤ Figure 1

March 2000 The Delphi Magazine 37

Delphi Component Design about
using TList in this fashion:

‘You’ll almost always wind up
using a TList in a component, but
you’ll never create descendants of
TList. TList is a worker drone, not
a promiscuous ancestor class...
You should create a simple wrap-
per class (derived from TObject,
not TList) that exposes only the
property and function equivalents
of TList that you need ...’

It seems probable that Borland
had their own needs in mind when
providing these classes. They are
used throughout the VCL, in both
design-time functionality and in
general runtime facilities.

A useful quality of TObjectList
(and, by virtue of inheritance,
TComponentList) is the property
OwnsObjects, which will cause free-
ing of contained objects upon dele-
tion. Furthermore, an overloaded
constructor is provided which
allows setting the property value in
the constructor call. Also interest-
ing is that TObjectListmakes use of
the new notification capability of
TList discussed earlier.

I don’t know about you, but I’ve
been on the verge of writing a
TComponent list for several years
now. Like a lot of you, I suspect, I
did write a TIntegerList early on,
because I used this type of object
frequently and got thoroughly
bored with typing requisite casts
between Integer and Pointer
types. And, OK, I’ll confess I didn’t
follow Danny Thorpe’s advice
either (but the book hadn’t even
been published at that time, so give
me a little slack).

Although I have occasionally
needed a TComponentList, the need
never seemed compelling enough
to justify getting sidetracked from
the work at hand. Looking back, I
could have saved myself a good
deal of typing had I actually taken
the time to write a class like this. At
least now we all have a ready-made
capability out of the box.

Bucknall On A Budget
The other main class hierarchy in
Contnrs.pas offers a simple stack
and a simple queue. When I say
simple, I mean that the machinery
for supplying these capabilities

isn’t very elaborate. If you were
expecting the elegant and highly
optimized kinds of access and stor-
age management that you’ve come
to expect of container classes in
Julian Bucknall’s Algorithms
Alfresco column, you will be
disappointed.

But that’s not to say they are
inelegant. Rather, they’re imple-
mented with concise code that’s to

the point. Listing 6 shows the dec-
laration of these classes. Both the
stack and queue classes are
derived from the TOrderedList
class, which is itself abstract.

The principal operations sup-
ported by both the stack and
queue are Push (add item to the
container), Pop (remove an item)
and Peek (return what would be
removed if a Pop were executed,

TObjectList = class(TList)
private
FOwnsObjects: Boolean;

protected
...

public
constructor Create; overload;
constructor Create(AOwnsObjects: Boolean); overload;
function Add(AObject: TObject): Integer;
function Remove(AObject: TObject): Integer;
function IndexOf(AObject: TObject): Integer;
function FindInstanceOf(AClass: TClass; AExact: Boolean = True;
AStartAt: Integer = 0): Integer;

procedure Insert(Index: Integer; AObject: TObject);
property OwnsObjects: Boolean read FOwnsObjects write FOwnsObjects;
property Items[Index: Integer]: TObject read GetItem write SetItem; default;

end;
TComponentList = class(TObjectList)
private
...

protected
...

public
destructor Destroy; override;
function Add(AComponent: TComponent): Integer;
function Remove(AComponent: TComponent): Integer;
function IndexOf(AComponent: TComponent): Integer;
procedure Insert(Index: Integer; AComponent: TComponent);
property Items[Index: Integer]: TComponent read GetItems write SetItems;
default;

end;
TClassList = class(TList)
protected
...

public
function Add(aClass: TClass): Integer;
function Remove(aClass: TClass): Integer;
function IndexOf(aClass: TClass): Integer;
procedure Insert(Index: Integer; aClass: TClass);
property Items[Index: Integer]: TClass read GetItems write SetItems; default;

end;

➤ Above: Listing 5 ➤ Below: Listing 6

TOrderedList = class(TObject)
private
...

protected
procedure PushItem(AItem: Pointer); virtual; abstract;
...

public
constructor Create;
destructor Destroy; override;
function Count: Integer;
function AtLeast(ACount: Integer): Boolean;
procedure Push(AItem: Pointer);
function Pop: Pointer;
function Peek: Pointer;

end;
TStack = class(TOrderedList)
protected
procedure PushItem(AItem: Pointer); override;

end;
TObjectStack = class(TStack)
public
procedure Push(AObject: TObject);
function Pop: TObject;
function Peek: TObject;

end;
TQueue = class(TOrderedList)
protected
procedure PushItem(AItem: Pointer); override;

end;
TObjectQueue = class(TQueue)
public
procedure Push(AObject: TObject);
function Pop: TObject;
function Peek: TObject;

end;

38 The Delphi Magazine Issue 55

but don’t remove the item). The
only difference between the stack
and the queue is that the stack
offers last-in-first-out item manage-
ment and the queue offers first-in-
first-out management. In fact, in
the implementations of TStack and
TQueue classes, both override the
PushItem method. The TStack ver-
sion adds an item to the end of the
contained TList, and the TQueue
version inserts it at the beginning
of the list. Otherwise, they’re iden-
tical, but we’ll examine the perfor-
mance implications in a moment.

Both TStack and TList have
derived classes, intended for use
in managing TObject references.

There’s nothing particularly note-
worthy about TObjectStack and
TObjectQueue, but these specializa-
tions do provide a convenience
that may be appreciated in some
situations.

One more thing to note about the
two derivative classes is that,
unlike the TObjectList and TComp-
onentList discussed earlier, there
is no OwnsObjects property. This is
entirely reasonable, in that one
would rarely pop an object from
the list only to see it destroyed.

Q&A Time
Although the implementation of
TQueue is straightforward enough, I
had to wonder how it would per-
form when the number of items

became large. Clearly, the insert at
the beginning of the TList has to
get expensive for large numbers of
items. The insert operation
allocates additional storage if nec-
essary and then moves the existing
contents after the insert point over
to accommodate the new item.

Not one to resist a small but
interesting science project, I
decided to test the performance of
TQueue against a queue class that
caters for large numbers of items.
The TBigQueue class is included on
the companion disk. Let me assure
you that I’m not trying to be an
alarmist in discussing the short-
comings of TQueue for large num-
bers of items. The performance of
the queue is probably just fine for
the uses to which Borland presum-
ably puts it in the VCL, where large
numbers of items are probably not
a worry. We can’t be completely
certain, though, because TQueue
and TObjectQueue are not used
anywhere in the shipping (that is,
visible) VCL code.

I’ll not undertake a full explana-
tion of it, but the basic strategy
works as follows. We begin with a
single internal list which is given a
preset set count of 1K items. The
class keeps track of the next push
index and the next pop index. The
processing does not do any physi-
cal movement of existing items. If
we have just one internal list, and
the last item is popped, the next
push and pop indexes are reset to
reuse the entire space.

const
QUEUE_LIST_CAPACITY = 1024;

constructor TBigQueue.Create;
begin
inherited Create;
LL := TList.Create; // the list of lists
CreateNewItemList;
PopList := PushList;
NextPushIndex := 0;
NextPopIndex := 0;

end;
procedure TBigQueue.CreateNewItemList;
begin
PushList := TList.Create;
PushList.Count := QUEUE_LIST_CAPACITY;
NextPushIndex := 0;
LL.Add(PushList);

end;
function TBigQueue.Peek: Pointer;
begin
if (PopList<>PushList) or
(NextPopIndex<NextPushIndex) then
Result := PopList[NextPopIndex]

else
raise EBigQueueException.Create(
'Pop or Peek invoked when no item available');

end;
function TBigQueue.Pop: Pointer;
begin
Result := Peek;
Inc(NextPopIndex);
if (PopList = PushList) then begin
if (NextPopIndex = NextPushIndex) then begin
NextPopIndex := 0;
NextPushIndex := 0;

end;
end else begin
if (NextPopIndex = QUEUE_LIST_CAPACITY) then begin
LL.Delete(0);
PopList := TList(LL[0]);
NextPopIndex := 0;

end;
end;

end;
procedure TBigQueue.Push(AItem: Pointer);
begin
if NextPushIndex = QUEUE_LIST_CAPACITY then
CreateNewItemList;

PushList[NextPushIndex] := AItem;
Inc(NextPushIndex);

end;

➤ Listing 7
EFlexiSortListError = class(Exception);
TSortItem = record
PPI: PPropInfo;
Descending: Boolean;
Kind: TTypeKind;

end;
TSortItems = array of TSortItem;
TFlexiSortList = class(TObject)
private
ContainedClassType: TClass;
List: TList;
SortItems: TSortItems;

protected
function CompareItems(Item1, Item2: Pointer): Integer;
function Get(Index: Integer): TObject;
function GetCapacity: Integer;
function GetCount: Integer;
procedure InitializeSortItems(const SortFields: array of String);
procedure Put(Index: Integer; Item: TObject);
procedure QuickFlexiSort(SortList: PPointerList; L, R: Integer);
procedure SetCapacity(NewCapacity: Integer);
procedure SetCount(NewCount: Integer);

public
constructor Create(ClassType: TClass);
destructor Destroy; override;
function Add(Item: TObject): Integer;
procedure Clear;
procedure Delete(Index: Integer);
procedure Pack;
function Remove(Item: TObject): Integer;
procedure Sort(const SortFields: array of String);
property Capacity: Integer read GetCapacity write SetCapacity;
property Count: Integer read GetCount write SetCount;
property Items[Index: Integer]: TObject read Get write Put; default;

end;

➤ Listing 8

40 The Delphi Magazine Issue 55

If the next push index exceeds
the capacity, a new list is allocated
(we keep a list of these internal
lists to track the process). During
the use of multiple lists, if we pop
the last item, then that list is simply
destroyed. Listing 7 contains an
extract of the class implementa-
tion code from which you should
be able to get an idea of how this is
accomplished.

So, how does performance com-
pare? I constructed a rigorous test
that involved two loops each
executing 2,000 times. In the first
loop, each iteration did four
pushes and two pops, and in the
second, two pushes and four pops.
At the high-water mark, there are
4,000 items in the queue. The
differences were dramatic, with
TBigQueue executing roughly 25
times as fast as TQueue for this test
case.

Having proved this point, I didn’t
bother to test performance in non-
rigorous circumstances. I would

suspect, though, that for modest
numbers of items, the two classes
would offer fairly comparable
performance.

Can I Take Your Order?
Let us now turn our attention to a
new container class, TFlexiSort.
Like so many service classes, this
one was inspired by a real-life
requirement. I had written an anal-
ysis program to read Oracle cata-
log information and other meta
data in order to produce a discrep-
ancy listing. The report items
included an error code, a data item
identifier, and a severity level
(error, warning or hint). I was
requested to have the report
results sorted by any of the above
three pieces of information per the
user’s preference.

Now, it didn’t take all that long to
devise a solution. I ended up using
a TList that contained references
to the report items (which were
instances of a simple, data-only
class), but I had to write three dif-
ferent Compare procedures to pass

to the TList.Sort method depend-
ing on which ordering was desired.
It seemed that a ready-made class
to do this kind of thing would be
nicely reusable.

But how can one devise a sort
capability for a container class
when one doesn’t know what data
members its contained class will
have in the first place? Never fear,
it’s RTTI to the rescue!

Let’s briefly review some basic
facts about RTTI (runtime type
information). RTTI’s most notable
commission is that it enables
Delphi’s component property
streaming machinery. It’s central
to the power of Delphi’s RAD-ness.

Classes which are defined with
the $TYPEINFO (alias $M) compiler
directive turned on will have RTTI
information generated, as will any
class which descends from such a
class. All classes that derive
directly or indirectly from
TPersistent will have RTTI pro-
duced. RTTI isn’t produced for
everything in a class, but is
restricted to published properties.

function TFlexiSortList.CompareItems(Item1, Item2: Pointer):
Integer;

var
I: Integer;
PPI: PPropInfo;
function CompareOrd(I1, I2: LongInt): Integer;
begin
if I1 > I2 then
Result := 1

else if I1 = I2 then
Result := 0

else
Result := -1;

end;
function CompareFloat(I1, I2: Extended): Integer;
begin
if I1 > I2 then
Result := 1

else if I1 = I2 then
Result := 0

else
Result := -1;

end;
function CompareInt64(I1, I2: Int64): Integer;
begin
if I1 > I2 then
Result := 1

else if I1 = I2 then
Result := 0

else
Result := -1;

end;
begin
Result := 0;
I := 0;
while ((Result = 0) and (I < Length(SortItems))) do begin
PPI := SortItems[I].PPI;
if PPI <> nil then begin
case SortItems[I].Kind of
tkInteger, tkChar, tkEnumeration:
Result := CompareInt64(GetOrdProp(Item1, PPI),
GetOrdProp(Item2, PPI));

tkFloat:
Result := CompareFloat(GetFloatProp(Item1, PPI),
GetFloatProp(Item2, PPI));

tkString, tkLString, tkWString:
Result := AnsiCompareStr(GetStrProp(Item1, PPI),
GetStrProp(Item2, PPI));

tkInt64:
Result := CompareInt64(GetInt64Prop(Item1, PPI),

GetInt64Prop(Item2, PPI));
end;

end;
if Result = 0 then
Inc(I)

else if SortItems[I].Descending then
Result := -Result;

end;
end;
procedure TFlexiSortList.InitializeSortItems(
const SortFields: array of String);

var
I: Integer;
S: String;
PPI: PPropInfo;
PTI: PTypeInfo;
TK: TTypeKind;

begin
SetLength(SortItems, High(SortFields) + 1);
for I := 0 to High(SortFields) do begin
SortItems[I].PPI := nil;
SortItems[I].Descending := False;
if Copy(SortFields[I], 1, 2) = 'D:' then begin
SortItems[I].Descending := True;
S := Copy(SortFields[I], 3, $7FFF);

end else if Copy(SortFields[I], 1, 2) = 'A:' then
S := Copy(SortFields[I], 3, $7FFF)

else
S := SortFields[I];

PPI := GetPropInfo(ContainedClassType.ClassInfo, S);
if PPI = nil then
raise EFlexiSortListError.Create('Sort item ' + S +
' is not a published property for ' +
ContainedClassType.ClassName);

SortItems[I].PPI := PPI;
PTI := PPI.PropType^;
TK := PTI.Kind;
if not (TK in [tkInteger,tkChar,tkEnumeration,
tkFloat,tkString,tkLString,tkWString,tkInt64]) then
raise EFlexiSortListError.Create('Sort item ' + S +
' is not a valid type for sorting in class ' +
ContainedClassType.ClassName);

SortItems[I].Kind := TK;
end;

end;
procedure TFlexiSortList.QuickFlexiSort(
SortList: PPointerList; L, R: Integer);

...
begin
// standard quicksort logic that calls CompareItems

end;

➤ Listing 9

March 2000 The Delphi Magazine 41

RTTI not only allows retrieval of
data type information of published
properties to be accessed via a
property name, RTTI-based ser-
vices exist which can be used for
property value access (again, via a
property name) at runtime.

Now we’re getting somewhere. If
we impose the simple requirement
that class data members upon
which we want to sort must be pub-
lished properties, we’re on our
way. Of course, the other require-
ment is that the RTTI will be pro-
duced for the class in the first
place, as described in the preced-
ing paragraph.

Listing 8 shows the declaration
of the TFlexiSortList class. The
first thing to note is that the con-
structor requires a parameter
specifying the class type of the
contained class. The Add method
will force compliance We cannot
sort a list of heterogeneous object
types (unless all derive from a
common ancestor class, and the
sort items are limited to properties
of that base class).

Most of the public methods are
ones that will be familiar to users of
TList. A few (like Exchange) are
omitted because they are probably
of limited utility in a class like this.
The one major departure from
TList is found in the Sort method.

The Sort method takes an open
array of strings as a parameter.
Each element in the array must

specify the name of a pub-
lished property. The prop-
erty name may be prefixed
by A: or D: to denote
ascending or descending. If
the prefix is omitted,
ascending is assumed.

Not all property types are
allowed. Sorting on a set
property doesn’t seem to
make much sense, for

example, and sorting on an event
procedure makes even less. The
types allowed include all cardinal,
integer, float and string types. You
could make a case for also support-
ing Variant types as candidate sort
items, but this implementation for-
goes that option.

Listing 9 contains the implemen-
tation code involved in servicing a
sort request. There are several
places where RTTI comes into
the picture. In the method
InitializeSortItems, the sort ‘col-
umns’ are checked for compliance
to the sort types supported. We
can provide some optimization
here by retrieving and storing the
PPropInfo pointer for each ‘col-
umn’, rather than doing this later
for every item comparison. We can
also make things run a bit faster
(and make the comparison routine
coding easier) by looking up and
saving the TTypeKind value for the
property.

Although space doesn’t permit a
detailed discussion of what’s going
on here with respect to RTTI
access, good accounts of this are
available elsewhere. For my own
education in developing this code,
I referred back to my indispensable

copy of Secrets of Delphi 2 by Ray
Lischner. Unfortunately, this book
has long been out of print, but I
highly recommend that you seek
out Ray’s new work, Delphi in a
Nutshell, which should be on the
shelves around the time of the
publication of this issue. I haven’t
seen it myself yet, but I fully expect
the new volume to become a much
referenced member of my Delphi
library.

Getting back to the business at
hand, it remains only to explain the
actual sorting process. Like the
TList sort, TFlexiSortList uses an
internal quick sort to run the show.
Unlike TList, the developer need
not supply a compare function.
Item comparisons are done by the
protected method CompareItems. In
it, you can see that the values for
comparison are extracted using
the RTTI support routines,
GetOrdProp, GetFloatProp, etc.

There is obviously a perfor-
mance overhead in using the
GetXxxProp in every item compari-
son. Unfortunately, these func-
tions are not called just once for
each property of an item, they are
called every time an item is com-
pared to another. Such is the price
for the flexibility we’ve gained.
However, for a great many applica-
tions where maximum optimiza-
tion is unnecessary, or when
relatively small sets of items need
be sorted, the performance will be
completely acceptable.

Finally, a demo program shows
all this in action. It draws upon ser-
vices of TFlexiSortList to manage
a collection of objects of a class
that sports a string, an integer, a
Boolean, a TDateTime and a Currency
property. Figure 2 shows a form

➤ Figure 2

procedure TfrmTestRig.bSort1Click(
Sender: TObject);

begin
FSL.Sort(['A:PInt',
'D:PDateTime']);
LoadGrid;

➤ Listing 10

42 The Delphi Magazine Issue 55

that contains a TStringGrid dis-
playing these values and a number
of buttons by which the rows can
be sorted in different orderings.
Listing 10 shows the code for one
of the button’s OnClick handlers in
which you can see how easy it is to
invoke the class’s sorting services.

Putting A Lid On It
Before closing, I would like to sug-
gest that the TOrderedList family of

classes in Contnrs.pas offers a
nicely compact lesson in the
power of inheritance. If you are
new to the study of the
object-oriented approach to soft-
ware design, you might learn much
from a brief examination of these
classes.

Oh yes, remember the bug in
TList.Put? Look at the first of the
two Notify calls in Listing 3. It
seems to me the first parameter

ought to be Temp, not Item. What do
you think?

David Baer is Chief Software
Architect at Spear Technologies in
San Francisco. He’s had that job
title printed on his business
card for over two years now,
unlike a certain individual at
Microsoft! Contact him at dbaer@
speartechnologies.com

	Old Dogs, New Tricks
	Always The Last To Find Out
	More Goodies
	Bucknall On A Budget
	Q&A Time
	Can I Take Your Order?
	Putting A Lid On It

